

I/ Notations

A Appui de gauche B Appui de droite

Droite (AB) Ligne moyenne continue représentative des centres de surface des sections le long de la

poutre

P Intensité de la charge concentrée appliquée q Intensité de la charge répartie appliquée

C,D Points d'application des charges

a,b Distance entre un des appuis et la charge R_A , R_B Réactions des appuis A et B sur la poutre AB

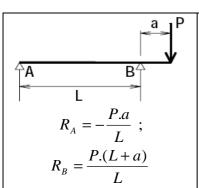
 V_A, V_B Efforts tranchants aux appuis A et B $V_{\overline{AB}}$ Effort tranchant entre les points A et B V_{dA} Effort tranchant à droite du point A V_{gA} Effort tranchant à gauche du point A

x Abscisse d'une section courante

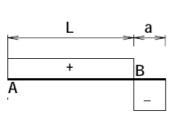
 x_0 Abscisse de la section dans laquelle s'exerce le moment de flexion maximal

M(x), V(x) Moment de flexion et effort tranchant dans la section d'abscisse x

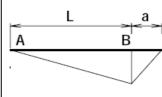
 M_0 Moment de flexion maximal dans la poutre AB


 θ_A , θ_B Rotation des sections en A et B

f Flèche

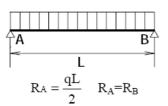

II/ Poutre sur deux appuis simples

	Effort tranchant	Moment de flexion	Observations
$A C \qquad B$ $C B C B$ $C C B C B$ $C C B C C B$	$A \qquad + \qquad \qquad + \qquad \qquad B$ $V_{\overline{AC}} = -R_A V_{\overline{CB}} = R_B$	$A \qquad B$ $M_0 = \frac{P.a.b}{L} \text{ pour } x_0 = a$	La flèche est maximale $pour \ x = \sqrt{\frac{L^2 - b^2}{3}}$ $f = -\frac{Fb(L^2 - b^2)^{3/2}}{9\sqrt{3}E.I.L}$ $\theta_A = \frac{F.a.b.(L+b)}{E.I.L}$ $\theta_B = \frac{F.a.b.(L+a)}{E.I.L}$
P a a P A B L $R_A = P$ $R_B = P$ Charges concentrées sur porte- à-faux	$\begin{bmatrix} \mathbf{a} & \mathbf{L} & \mathbf{a} \\ + & & \\ \mathbf{A} & \mathbf{B} & \\ V_{gA} = \mathbf{P} & V_{dB} = -\mathbf{P} \\ V_{\overline{AB}} = 0 \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Moment constant de A à B.

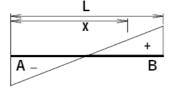


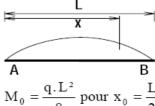
Charge concentrée sur un porte-à-faux

 $V_{\overline{AB}} = -R_A V_{dB} = P$

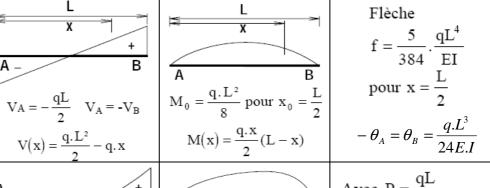


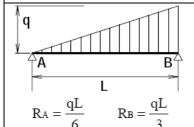
 $M_0 = M_B = -P.a$


Sens des actions aux appuis :

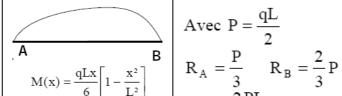

RA: vers le bas.

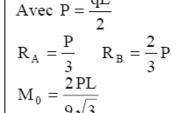
R_B: vers le haut.




Charge uniformément répartie

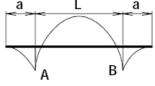
 $V(x) = \frac{q \cdot L^2}{2} - q \cdot x \qquad M(x) = \frac{q \cdot x}{2} (L - x) \qquad -\theta_A = \theta_B = \frac{q \cdot L^3}{24E \cdot I}$






Charge à répartition variable

 $V_A = -R_A$ $V_B = R_B$ $V_0 = 0$ pour $x = \frac{L}{\sqrt{3}}$ $M_0 = \frac{q1^2}{9\sqrt{3}}$ pour $x_0 = \frac{L}{\sqrt{3}}$ $M_0 = \frac{2PL}{9\sqrt{3}}$

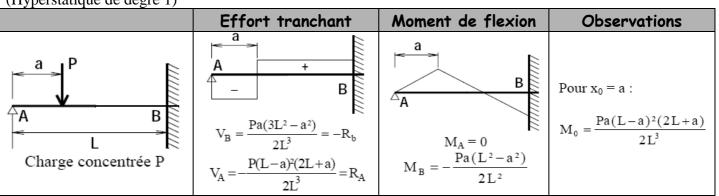


Charges uniformément réparties

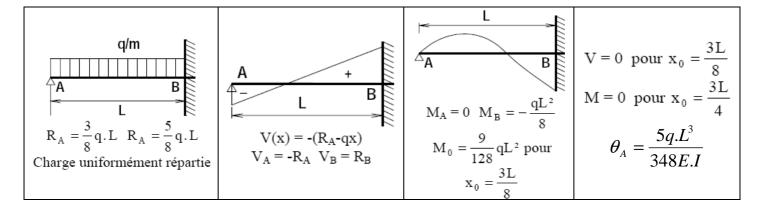
 $V_{gB} = \frac{qL}{2} V_{dB} = -qA$

 $V_{gA} = qA$ $V_{dA} = -\frac{qL}{2}$ $M_0 = \frac{q}{8}(L^2 - 4a^2)$ à mi portée.

 $M_{A} = M_{B} = -q \frac{a^{2}}{2}$



III/ Poutre encastrée à une extrémité, libre à l'autre extrémité.


	Effort tranchant	Moment de flexion	Observations
P b A C B L R _B = P.b M _B = -P.b Charge concentrée	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & b \\ \hline A \\ M_B = -Pb \end{array}$	Flèche en A: $f = \frac{P.b^2}{6E.I}(3L - b)$ Flèche en C: $f = \frac{P.b^3}{3E.I}$ $\theta_A = \theta_C = \frac{P.b^2}{2E.I}$
q/m $A \qquad B$ L $R_B = q.L \qquad M_A = -\frac{q.L^2}{2}$ Charge uniformément répartie	$V_{B} = qL$ $V(x) = px$	$A = -\frac{qL^2}{2}$ $M(x) = -q\frac{x^2}{2}$	Flèche en A: $f = \frac{qL^4}{8 EI}$ $\theta_A = \frac{q.L^3}{6E.I}$
A B B L Moment de flexion Mf	$A \qquad L \qquad B$ $V(x) = 0$	b + B A C M _A = 0 M _{CB} = Mf	Flèche en A: $f = \frac{Mf \cdot b}{E \cdot I} (L - \frac{b}{2})$ Flèche en C: $f = \frac{Mf \cdot b^{2}}{2E \cdot I}$ Rotations: $\theta_{A} = \theta_{B} = \frac{Mf \cdot b}{E \cdot I}$

IV/ Poutre encastrée à une extrémité et appuyée à l'autre extrémité.

(Hyperstatique de degré 1)

III/ Poutre encastrée à chaque extrémité.

(Hyperstatique de degré 5 dans l'espace 3 dans le plan)

	Effort tranchant	Moment de flexion	Observations
A B	A + B	$M_{A} = -\frac{Pa(L-a)^{2}}{L^{2}}$	Pour $x_0 = a$ V = 0 $M_0 = -\frac{2Pa(L-a)^2}{L^3}$
Charge concentrée P	$V_A = -R_{Ay} V_B = R_{By}$	$M_B = -\frac{Pa(L-a)^2}{L^2}$	
$\begin{array}{c c} q/m \\ \hline A & B \\ \hline L \\ \hline R_{Ay} = \frac{q.L}{2} R_{Ay} = R_{By} \\ \hline Charge uniformément répartie \\ \end{array}$	$V_A = -R_{Ay}$ $V_B = R_{By}$	$M_{A} = -\frac{qL^{2}}{12}; M_{B} = -\frac{qL^{2}}{12}$	Pour x=L/2: $V = 0$ $M_0 = \frac{qL^2}{24}$ $f = \frac{qL^4}{384 EI}$
A B R _{Ay} = P R _{By} = P Deux charges concentrées P	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$M_{A} = -\frac{Pa(L-a)}{L} = M_{B}$	Entre C et D : $M = \frac{Pa^2}{L}$