Cycle Préparatoire IFCI, INSA de Toulouse

Filière Génie Mécanique

Devoir de Cinématique

Etude du mouvement d'une pièce de monnaie

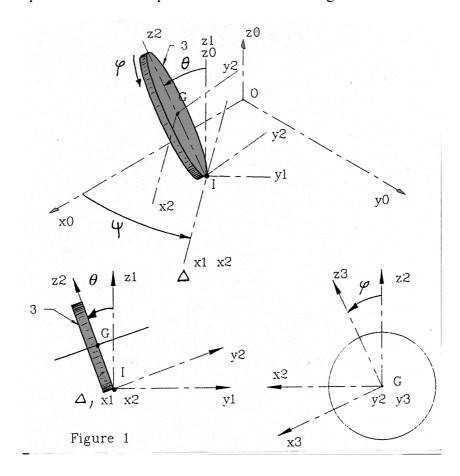
On considère une pièce de monnaie, notée 3, modélisée par un disque de rayon r, de centre de gravité G et de masse m. Cette pièce roule sans glisser sur le plan (O,x_0,y_0) noté O. On appelle I le point de contact de la pièce avec ce plan.

La position de la pièce est repérée par les paramètres suivants (fig. 1) :

- x_I et y_I , coordonnées dans le repère θ du point de contact I,
- ψ , angle caractérisant la rotation d'axe Oz_0 de la base B_1 par rapport à la base B_0 (voir figure 1);
- θ angle caractérisant la rotation autour de x_1 de la base B_2 par rapport à la base B_1 et correspondant à l'inclinaison de la pièce de monnaie par rapport à un plan vertical,
- ϕ angle caractérisant la rotation propre de la pièce de monnaie autour de l'axe Gy_2 .

<u>Nota</u>: il n'est peut-être pas inutile de sortir une véritable pièce de sa poche pour mieux appréhender la paramétrisation; pour des raisons de compréhension, la pièce est dessinée avec un peu d'épaisseur sur la figure mais dans les calculs, la pièce est modélisée par un disque.

- 1°) Donner l'expression du vecteur rotation de 3 par rapport à 0.
- 2°) Donner l'expression la plus simple du vecteur OG.
- 3°) En déduire l'expression la plus simple du vecteur vitesse du point G dans le mouvement de 3 par rapport à 0. Ecrire ensuite ce résultat dans la base 2.
- 4°) Ecrire les équations scalaires exprimant le roulement sans glissement en *I*.



Correction

1) Donner l'expression du vecteur rotation de 3 par rapport à 0.

On a:
$$\vec{\Omega}_{3/0} = \dot{\psi} \vec{z}_0 + \dot{\theta} \vec{x}_1 + \dot{\phi} \vec{y}_2$$

On n'oubliera pas de faire des dessins illustrant ces trois rotations.

2) Donner l'expression la plus simple du vecteur OG.

On a:

$$\vec{OG} = \vec{OI} + \vec{IG} = x_1 \vec{x_0} + y_1 \vec{y_0} + r \vec{z_2}$$

3°) En déduire l'expression la plus simple du vecteur vitesse du point *G* dans le mouvement de 3 par rapport à 0. Ecrire ensuite ce résultat dans la base 2.

On a:
$$\vec{V}(G, 3/0) = \left(\frac{d}{dt}\vec{OG}\right)_0 = \vec{x}_I \vec{x}_0 + \vec{y}_I \vec{y}_0 + r \left(\frac{d}{dt}\vec{z}_2\right)_0$$

Soit

$$\vec{V}(G,3/0) = \dot{x}_I \vec{x}_0 + \dot{y}_I \vec{y}_0 + r \left(\frac{d}{dt} \vec{z}_2\right)_2 + r \vec{\Omega}_{2/0} \wedge \vec{z}_2 = \dot{x}_I \vec{x}_0 + \dot{y}_I \vec{y}_0 + r (\dot{\psi} \vec{z}_0 + \dot{\theta} \vec{x}_1) \wedge \vec{z}_2$$

Soit finalement

$$\vec{V}(G, 3/0) = \dot{x}_1 \vec{x}_0 + \dot{y}_1 \vec{y}_0 + r(\dot{\psi} \sin \theta \vec{x}_2 - \dot{\theta} \vec{y}_2)$$

Pour obtenir l'expression de $\vec{V}(G, 3/0)$ dans la base 2, il faut projeter \vec{x}_0 et \vec{y}_0 dans la base 2. On obtient :

$$\vec{x}_0 = \cos \psi \vec{x}_1 - \sin \psi \vec{y}_1 = \cos \psi \vec{x}_2 - \sin \psi (\cos \theta \vec{y}_2 - \sin \theta \vec{z}_2)$$

$$\vec{y}_0 = \cos \psi \vec{y}_1 + \sin \psi \vec{x}_1 = \cos \psi (\cos \theta \vec{y}_2 - \sin \theta \vec{z}_2) + \sin \psi \vec{x}_2$$

Ainsi

$$\vec{V}(G,3/0) = \begin{vmatrix} r \dot{\psi} \sin \theta + \dot{x}_I \cos \psi + \dot{y}_I \sin \psi \\ -r \dot{\theta} - \dot{x}_I \sin \psi \cos \theta + \dot{y}_I \cos \psi \cos \theta \\ \dot{x}_I \sin \psi \sin \theta - \dot{y}_I \cos \psi \sin \theta \end{vmatrix}$$

4°) Ecrire les équations scalaires exprimant le roulement sans glissement en *I*.

Le roulement sans glissement en *I* s'écrit :

$$\vec{V}(I,3/0) = \vec{0}$$

Soit

$$\vec{V}(G, 3/0) + \vec{IG} \wedge \vec{\Omega}_{3/0} = \vec{0}$$

Soit, en utilisant la base 2

$$\begin{vmatrix} r \dot{\psi} \sin \theta + \dot{x}_{I} \cos \psi + \dot{y}_{I} \sin \psi \\ -r \dot{\theta} - \dot{x}_{I} \sin \psi \cos \theta + \dot{y}_{I} \cos \psi \cos \theta + \begin{vmatrix} 0 \\ 0 \land \end{vmatrix} \dot{\phi} + \dot{\psi} \sin \theta = \vec{0} \\ \dot{x}_{I} \sin \psi \sin \theta - \dot{y}_{I} \cos \psi \sin \theta \end{vmatrix} \begin{vmatrix} 0 \\ 0 \land \end{vmatrix} \dot{\phi} + \dot{\psi} \sin \theta = \vec{0}$$

Finalement le roulement sans glissement s'écrit

$$\begin{vmatrix} -r\dot{\phi} + \dot{x}_I\cos\psi + \dot{y}_I\sin\psi \\ -\dot{x}_I\sin\psi\cos\theta + \dot{y}_I\cos\psi\cos\theta = \\ \dot{x}_I\sin\psi\sin\theta - \dot{y}_I\cos\psi\sin\theta \end{vmatrix} = \begin{vmatrix} 0\\0\\0\\0 \end{vmatrix}$$